

Division of Drinking and Ground Waters

APPLIED DRINKING WATER MATH FORMULA SHEET AND CONVERSION FACTORS

12 in = 1 ft 3 ft = 1 vd5280 ft = 1 mi 144 sq. in. = 1ft^2 $43,560 \text{ ft}^2 = 1 \text{ acre}$ 746 watts = 1hp

27 cu. Ft. = 1 cu. Yd 1000 mg = 1 gm7.48 gal = 1 cu. Ft.1000 gm = 1 kg8.34 lbs = 1 gal water 1000 ml = 1 liter $62.4 \text{ lbs} = 1 \text{ ft}^3 \text{ water}$ 2.31 ft water = 1 psi 1 grain/gal = 17.1 mg/L0.433 psi = 1 ft water $60 \sec = 1 \min$ 60 min = 1 hour 1440 min = 1 day 10,000 mg/L = 1%454 gm = 1 lb

L = Length

B = Base

 $\pi = 3.14$

W = Width

H = Height

R = Radius

Q = Flow Rate

A = Area

V = Volume

v = velocity

Gr = grains

AREA

Rectangle: A = L x W

Triangle: $A = \frac{1}{2} B \times H$

Circle: Area = πR^2

VOLUME

Cylinder: $V = \pi R^2 H$

Rectangule: $V = L \times W \times H$

Cone: $V = 1/3\pi R^2 H$

VELOCITIES and FLOW RATES

1. v = distancetime

2. Q = v x A

DETENTION TIME

Detention Time = <u>V</u>

PARTS PER MILLION / POUNDS

1. lbs = 8.34 lbs / gal x mg/L x MG

LOADINGS

1. Weir overflow rate = length of weir

2. Surface loading, gal / day / sq.ft. = surface area

3. Rise rate (ft / min) = surface loading (gal / min / ft²) 7.48 (gal / ft³)

CHEMICAL MIXING & SOLUTION STRENGTHS

1. Chemical, $\% = \frac{\text{dry chemical (lbs)} \times 100\%}{\text{dry chemical (lbs)} \times 100\%}$ [dry chemical (lbs) + water (lbs)]

2. Dry Chemical, lbs = water (lbs) (100%)Chemical (%) 3. Water (lbs) = dry chemical (lbs) x (100%) - dry chemical (lbs) Chemical, % 4. Liquid Chemical (gal) = Chemical solution (%) x gal of solution Liquid Chemical (%) desired feed rate (gal / hr) x 100% Scale setting, % = maximum feed rate (gal / hr) 6. Feeder setting, % = desired feed rate (lbs / day) x 100% maximum feed rate (lbs / day) hypo (gal) x hypo (%) - hypo (gal) x desired hypo (%) 7. Water added, gal. = desired hypo (%) Chemical feed = Chemical conc. x vol. pumped time pumped chemical, lbs / day 9. Feed rate (lbs / day) = (chemical, lbs) / (lb of commercial chemical) 10. ion purity (%) = (molecular weight of ion in compound) (100%) molecular weight of compound Q x concentration desired (mg/L x 8.34 (lbs / gal) (100%)(100%) 11. Feed rate (lbs / day) = solution (%) x purity (%) 12. Feed rate, gal / day = feed rate, lbs / day chemical solution, lbs / day 13. Portion of ion = (commercial chemical purity, %) (ion, %) (100%) (100%)

FILTRATION

1.	Backwash pumping rate, gal / min =	(filter surface area, ft²) x (backwash rate, gal / min / ft²)
2.	Backwash rinse, in / min =	(backwash rate, GPM / ft²) (12 in / ft) 7.48 gal / ft³
3.	Backwash % =	(backwash water, gal) x (100%) water filered, gal
4.	UFRV, gal / sq.ft. =	volume filtered, gal Filter surface area, ft ²

SOFTENING & DEMINERALIZATION

1. Lime feed, mg/L = $A + B + C + D \times 1.15$ purity of lime as a decimal

 $(mg/L as CO^2) x (56/44)$ A = carbon dioxide, source water $(mg/L as CaCO^3) \times (56/100)$ B = bicarbonate alkalinity, source water $(mg/L as CaCO^3) x (56/100)$ C = hydroxide alkalinity, source water $(mg/L as Mg^{2+}) x (56/24.3)$ D = magnesium, source water

If hydrated lime is used instead of quicklime, substitute 74 for 56 in A, B, C, and D.

2. Lime demand, mg/L = (2.27 x CO2) + (Total Alkalinity) + 4.12 x Mg) x 0.56

3. Lime demand, lbs / MG = (Lime demand, mg/L) (1 MG) (4.67 lb/ MG / mg/L) (excess lime, % / 10)

Calcium oxide purity (% / 100)

4. Exchange capacity, grains = (removal capacity, gr / ft³) (media vol. ft³)

Water treated, gal. = exchange capacity, grains

Hardness removed, grains / gal.

6. Bypass flow, gal / day = (total flow, gal / day) (finished water hardness, grains / gal.)

Raw water hardness, grains / gal.

7. Salt, lbs = (salt required, lbs / 1,000 grains) (hardness removed, grains)

Brine, gal = salt needed, lbs

salt solution, lbs / gal.

1 – product water TDS, mg/L x 100% Mineral rejection, % =

feedwater TDS, mg/L

product flow x 100% 10. Recovery, % =

feed flow

11. Non-Carbonate Hardness = Mg/L as CaCO³

Total Hardness – Total Alkalinity = Non-Carbonate Hardness Raw Non-Carbonate Hardness - Finished Non-Carbonate Hardness = Non-Carbonate Hardness Removed

12. Soda Ash = (Non-Carbonate Hardness) (106 / 100)

LABORATORY

1. Temperature, F = (temperature C)(1.8) + 32

2. Dilute to mL = (Actual Weight, gm) (1,000 mL)

(Desired Weight, gm)

3. Langelier Index (L.I.) = pH - pHs