Successful Closure of a DNAPL Site

Craig A. Cox, CPG, CP
Topics for Discussion

- What is DNAPL and why are DNAPL sites so difficult to close.
- What is DNAPL site closure.
- What is the approach to successful closure.
- Case study of a successful DNAPL site closure.
- Lessons Learned.
What is a DNAPL?

- DNAPL is a “Dense Non-Aqueous Phase Liquid”
- DNAPLs include:
 - halogenated solvents,
 - coal tar and creosotes, and
 - PCB oils.
- Most common form at environmental sites are the halogenated solvents.
Why are DNAPL Sites Difficult?

- Extreme concentration,
- High toxicity,
- Varied migration mechanisms,
- Location of the source, and
- Wetting (residual saturation).
What is DNAPL Site Closure?

- DNAPL site closure is a negotiated truce based on:
 - Setting and meeting realistic expectations,
 - Reducing source strength,
 - Containment, and
 - Risk reduction.

- Requires a prolonged partnership between the site owner, the regulator, and the community.
What is DNAPL Site Closure?

• Relies on:
 – Detailed site characterization activities,
 – Establishing and attaining site-specific alternate concentration limits (ACLs),
 – The likely require use of institutional controls.

• Expensive and time consuming.
Approaching Closure – Step 1

• Prepare for assessment:
 – Develop a Conceptual Site Model (CSM) and a Conceptual Site Exposure Model (CSEM),
 – Develop Data Quality Objectives,
 – Review site history,
 – Get the “Real Story”, and
 – Expect to manage lots of data.
Approaching Closure – Step 2

• Complete an initial assessment:
 – Use screening methods to focus your efforts,
 – Work from the outside – in,
 – Update the CSM and CSEM,
 – Discuss, if possible, your findings and the proposed scope of investigative activities with your regulator.
Approaching Closure – Step 3

• Begin a detailed, phased-investigation to evaluate source strength.
 – Work in 3-dimensions,
 – Collect complete data sets,
 – Establish extent,
 – Don’t disregard certain rules of thumb – DNAPLS can be difficult to locate.

• Establish weight- or volume-based source strength estimates.
Approaching Closure – Step 4

- Establish “Phase-Specific” performance goals to direct remediation:
 - Short-term (mitigation of the immediate risks),
 - Intermediate-term (source depletion and reduction of dissolved load),
 - Long-term (achieve regulatory compliance or risk-based criteria).

- Not necessarily numeric standards.
Approaching Closure – Step 5

- Begin phased remediation effort to meet the short-, intermediate-, and long-term goals.
- Expect to change technologies as your goals change.
- Collect real-time data to document source depletion efforts.
- Collect confirmation samples.
Approaching Closure – Step 6

- Repeat Step 5
- Develop and Implement Post-Closure Care and Monitoring Strategies.
- Establish Institutional Controls.
Case Study

- **Background:**
 - Metal recycler using TCE as a degreaser.
 - Catastrophic release of 500 gallons from a ruptured tank within the facility.
 - Site underlain by glacial till with shallow perched water zones.
 - Regional aquifer lies approximately 100 feet below grade.
 - Heavily industrialized area.
Case Study

- Conceptual Site Model:
 - Unknown quality of TCE affected soils adjacent to the building.
 - Bulk of the TCE trapped beneath the building slab.
 - Sub-slab vadose zone is very thin due to near-surface perched water zone.
 - TCE contained on-site.
 - TCE concentrations decrease with depth.
 - Regional aquifer protected by thick, dense till layer.

Cox-Colvin & Associates, Inc.
Case Study

- Conceptual Site Exposure Model:
 - Potential for site and construction workers to be exposed to TCE in soil through ingestion, dermal contact, and inhalation.
 - Potential for site workers to be exposed to TCE in indoor air through inhalation.
Case Study

- Implement short-term response.
 - Excavation and disposal of affected soils surrounding the building.
 - Excavation of a small drainage swale along the highway.

- Activities reduce the source strength by an estimated 20% (approximately 100 gallons).
Case Study

- Assessment/Investigation
 - Reviewed historic site concentration data in soil and groundwater.
 - Refined the 3-dimension understanding using a Membrane Interface Probe (MIP) and additional soil and groundwater sampling.
 - Established intermediate-term goal of depleting TCE concentrations to below 580 mg/kg (soil saturation limit).
Case Study

• Implement intermediate-term response
 – Two phases of HVDPE and chemical oxidant (potassium permanganate) flooding.
 – Log vapor concentrations in the extracted air stream using an in-line PID.
 – Analyzed TCE concentrations in extracted water prior to disposal.
 – Completed detailed 3-dimensional re-sampling of soil profile after each phase.
Case Study

• Implement intermediate-term response (continued)
 – Used volumetric mapping techniques to evaluate remaining TCE mass in place.
 – Collected additional groundwater data.
• TCE source depleted by an additional 70% (approximately 366 additional gallons, 466 gallons in total).
Case Study

• Risk Assessment
 – Collected and evaluated sub-slab and indoor air samples.
 – Completed risk assessment based on air samples and post-remediation soil and groundwater samples.
 – Hazard index and excess lifetime cancer risk were within acceptable risk ranges.
Case Study

- Implement long-term response
 - Prepared a Post-Closure Care and Monitoring Program.
 - Established deed restrictions prohibiting groundwater use.
 - Established a groundwater ACL of 36,000 ug/l as a predictor of vapor intrusion for a potential future off-site receptor.
 - Monitor groundwater semi-annually and indoor air annually.
Remedy

Cox–Colvin & Associates, Inc.
Remedy

Pre and Post Remediation TCE Concentrations in Soil Between 4 to 7 Feet,
Urico Alloys, Inc.,
Columbus, Ohio

Figure 3-2
Remedy

Pre and Post-Remediation TCE Concentrations in Soil Between 7 to 15 Feet, Urico Alloys, Inc., Columbus, Ohio

Figure 3-3
Lessons Learned

• Use MIP to sneak up on the source.
• Injecting fluids can move the source and provide a false indication of success.
• Document source depletion through extensive sampling efforts.
• Use volumetric mapping techniques to estimate source strength.
• Be flexible in choosing treatment technologies.
• It is possible to remediate tills using HVDPE.
References

